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Abstract

This paper proposes a new approach to the problem of inference and unsupervized learning in large, noisy
data streams, based on the mapping of correlations between stream variables and leveraging the tools of
Information Theory. Our approach was designed specifically for the needs of cognitive developmental
robotics, such as online concept extraction from a video feed or other real-world sensor streams. We present
experimental results demonstrating one-shot unsupervized sequencing and recognition of hand gestures
videos displaying two timescales.

Introduction

Machine Inference research so far has been
concentrating on static spatial inference,

and there are comparatively few inference mod-
els that operate over continuous data streams
(spatiotemporal inference), such as video input,
or the human sensorimotor stream. With the
exception of Slow Feature Analysis (SFA) [1],
the currently available dynamical models have
usually been based on first performing static
spatial inference over each frame of the tem-
poral input, and then learning sequences over
the spatial output. A notable example of this
approach would be the Hierachical Temporal
Memory (HTM) Zeta 1 model [2] by Dileep
and Hawkins. Other examples include Hidden
Markov Model (HMM)-based algorithms [3].

However, we argue that the inference
paradigm illustrated by HTM and others is
not adapated to cognitive robotics, and more
generally, to massively dimensional, noisy real-
world data streams (such as videos). Indeed,
performing static inference over single frames
maximizes the impact of high-frequency noise
over the inference process, increasing the prob-
ability of an error. Moreover, ordered sequen-
tiality is not a very tractable signal for under-

standing the real world, where higher-level
inference is often the result of identifying un-
ordered bags of features (for instance, scram-
bling words in a sentence does not significantly
impair reading), and where reversed causality
is generally as important as strict causality (as
an example, it is more evolutionary useful to
be able to process the unordered association
"predator appears when neighbors flee and
conversely", than to be limited to the naturally
occurring, ordered sequence "predator appears,
then neighbors flee"). In fact, we humans seem
relatively poorly equipped for memorizing or-
dered sequences, while we have no trouble
associatively recalling items that we have seen
in a same context.

Furthermore, recent neuropsychology re-
search [4] has shown that object recognition in
monkeys had more to do with inter-frame phe-
nomena such as temporal contiguity, than with
the single-frame appearance of objects. This
observation makes inter-frame correlation ap-
pear to be a good candidate principle on which
to build a spatiotemporal inference system.

For these reasons, we believe there is a need
for a new, better approach to spatiotemporal
inference, one that would better fit the needs
of cognitive robotics.
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1 The model

1.1 Overview

To answer this need, we propose an inference
model based on the mapping of correlations
between variables of a data stream (such as the
sensorimotor space of an agent), built using
the tools of Information Theory [?]. It is based
on the following fundamental hypotheses:

• A continuous data stream (such as the
a human’s or a robot’s sensorimotor
stream) can be structured into successive
"situations" displaying strong informa-
tion structure coherence

• Over each such situation, the relevant
spatiotemporal concepts that define the
situation form clusters of highly inter-
correlated data points

• The spatial configuration of these clusters
constitute a characteristic signature that
can then be used for concept learning and
recognition.

The intuitive idea behind this model is to
parse the sensorimotor space according to "situ-
ations" featuring clusters ("concepts") of events
or objects that reliably appear together, where
the notions of "situation" and "reliably appear
together" are defined using Information Theory.
For instance, a particular scene in a movie will
be interpreted as a "situation", and a charac-
ter appearing on screen during this scene will
constitute a spatiotemporal concept of the sit-
uation (since it exists as inter-correlated pixel
values on screen).

The high amount of generality provided by
its foundation on Information Theory allows
for this model to be used as the basis for not
only sensory inference algorithms, but gener-
ally for all aspects of sensorimotor develop-
ment such as prediction and motor control. We
briefly discuss prediction in the ’Future work’
section.

1.2 Modularity and hierarchy

Due to its excellent properties of complexity
reduction for large spatiotemporal problem
spaces, we chose to adopt the widely used
modular-hiearchical architecture principles [5].

As any other modular-hierarchical model,
our architecture is made of a number of iden-
tical modules (with scale-specific calibration),
organized into several layers representing tem-
poral scales (fig. 1). Each scale is a collection of
concept-specific neurons. These scales evolve
at characteristic times that are increasingly long
("increasing invariance"). The concepts repre-
sented in a given scale are thus increasingly
temporally extended. The zerot-th scale is oc-
cupied by the raw sensorimotor space X, a large
set of random variables xi taking values in [0,1]
and updating their value at every timestep dt.
Each module takes for input a segment of the
output of the lower scale, and outputs a seg-
ment of the input of the next scale (fig. 1).

1.3 Function of a single module

Each single module (fig. 1) performs
correlation-based spatiotemporal dimension-
ality reduction over its input. This is done in
two steps:

• First, the input is temporally sequenced
into situations featuring particularly
strong variable inter-correlation

• Then for each such situation, a spa-
tial cluster of the variables most inter-
correlated is extracted and is fed into a
"classical" spatial inference system.

The entire process is happening online,
though not in real time (concepts only get pro-
cessed after they are already no longer present
in the input).

The role of the first step, situation sequenc-
ing, is to allow for the computation of "clean"
spatial clusters. Arbitrary sequencing would
results in spatial clusters overlapping different
naturally occurring situations, which would
thus be poorly defined clusters making later
spatial inference difficult.
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Figure 1: Architecture overview

2 The algorithm

In this section we present the algorithmic detail
of each separate element of a single module in
our model. These are the algorithms used to
produce the experimental results of section III.

2.1 Situation sequencing

Online situation sequencing is performed by
computing the quantity of structure in the input,
and identifying increases (start of a coherent sit-
uation) and decreases (end of situation) in this
quantity. We chose the information-theoretic
"Integration" as a measure of this quantity. In-
tegration is a global estimate of the amount of
statistical dependence within a set of variables
X = x1..xn, defined as the difference between
the sum of individual entropies on the unitary
variables and the joint entropy of the entire set:

I(x) = ∑
i

H(xi)− H(X)

Where entropy H is defined as:

H(X) = −∑ p(x)log(p(x))

Intuitively, Integration increases with the
decrease of joint entropy, ie. with the amount
of statistical dependency within the set. It is
highest for a set of highly correlated, high-
entropy variables.

In our algorithm, pivots between situations
in the input of a module are identified as:

• local minima of the average of integration
pooled over all modules connected to the
same "father" module, if the module has
a father

• local minima of the integration value of
the module input, if the module is the
top module in the hierarchy

These local minima are taken over segments
of time equal to the (pre-evaluated) characteris-
tic length of a situation at the scale considered
(thus the end of a situation and the start of
a new situation is identified typically with a
delay of half this duration). The intuitive idea
here is that the apparition or disappearance of
a concept in the input stream (such as a dis-
continuous camera move in a movie, or the
apparition or disappearance of a character on
screen) will result in sudden decreases of the
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quantity of structure in the information space
of the stream. Segments of time between two
such decreases will thus correspond to the pres-
ence of a single coherent concept in the stream.

The only module-specific calibration found
in the model intervenes at this level: the ex-
pected characteristic length of a situation, ie.
the length of the time segment over which an
integration minimum will be identified as a
situation pivot.

2.2 Note on computing information
measures online

The computation of entropy, integration or mu-
tual information for a random variable would
normally require as a first step to establish an
histogram of the values of the variable associ-
ated with their respective probabilities. How-
ever this method prevents online computation:
the entire signal need to be available before pro-
cessing can start. Let us consider the following
instead: if we are dealing with variables at val-
ues in [0, 1], then we can consider the value
of the variable over each time step to be the
probability of activation of a prior binary vari-
able evolving at a much faster time scale. For
instance x(t) = 0.24 would mean that a mea-
sure of the value of the prior binary variable
bx associated to x, at a random time between
t and t + dt, would have a 24% probability of
yielding 1. By working in the space of these
prior binary variables bx rather than the space
of continuous variables x, we can assimilate val-
ues of x to probabilities of bx, and thus bring
information-theoretical computation online.

2.3 Cluster extraction

Once the start of a situation has been identi-
fied, the module computes at each time step
the matrix of pairwise Mutual Informations of
its input variables since the start of the situa-
tion. Mutual Information is the most general
measure of correlation between two random
variables, similar to Pearson’s correlation coef-
ficient, but able to capture non-linear depen-

dencies. It is defined as:

MI(x, y) = p(xy)log
p(xy)

p(x)p(y)))

The pairwise Mutual Information matrix
can be intuitively interpreted as the spatial map
of correlations within the input over the situ-
ation considered. It depicts clusters of partic-
ularly correlated variables, ie. spatiotemporal
concepts. The matrix is symmetric positive and
can be diagonalized in R. Each of its eigenvec-
tors characterizes one such independent con-
cept.

It is to note that the use of mutual infor-
mation here makes the inference process struc-
turally very noise-resistant. Any co-occurence
event that does not happen with statistical sig-
nificance over the situation simply will not be
processed.

2.4 Note on delayed causality detec-
tion

Mutual information cannot grasp delayed
causality (nor does Integration), whereas al-
most all causality effects in real world data
come with some delay. A simple solution
to force the processing of delayed causal-
ity would be to compute not only the map
of MI(xi(t), xj(t)) but also the maps of
MI(xi(t), xj(t + dt)) with dt in a certain dis-
creet interval. However the process would be
computationally expensive and severely un-
elegant. The approach we have chosen instead
is to give an immediate spatial representation
to delayed causality through the use of an in-
put pre-processing "trailing function":

X(t) = max(X(t), f .X(t − 1))

Where 0 < f < 1 is the trailing factor.
Intuitively, this trailing function will force

successive variable spike events to partially
overlap, leading to a higher mutual infor-
mation between the variables that saw these
spikes. All input is pre-processed as such be-
fore entering a module of our architecture. The
trailing function features a calibration parame-
ter that determines the temporal sensitivity or
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causality detection. This parameter is linked to
the only module-specific calibration parameter:
the characteristic length of a situation at the
scale considered.

2.5 Inference

The situation eigenvectors previously com-
puted can then be fed into a "classical" spa-
tial inference system, that will perform spa-
tial dimensionality reduction (projecting the
n-variable vector into a comparatively small
space of expected concepts). Good candidates
for such a system would be a sparse autoen-
coder [6] or a Kohonen self-organizing map
[7]. However these systems require large train-
ing sample sets, whereas we would like to be
able to perform few-shots learning. Therefore,
rather than an algorithm with a learning phase,
we use a simple locality-sensitive hashing func-
tion. It transforms the large input vector into a
much smaller vector while roughly preserving
space geometry.

Let n be the size of input I and m be the
chosen size of the output. We chose a set
S = Vi, 0 < i < m of m normalized (for L2)
random vectors with positive coordinates. The
output is the vector of components xi = I.Vi.

The output of the module is the output
of the chosen learning and recognition algo-
rithm (or in our particular implementation, the
output of the hashing function). It is spatially
much smaller than the input, and evolves much
slower (it will be quasi-constant over each situ-
ation).

3 Experimental results

The above algorithm can be applied to extract
the spatiotemporal concept hierarchy of any
large continuous data stream.

In order to give a concrete illustration of
how the algorithm works, we present here
results from running it on a 27 second long,
30x40px grayscale video of continuous hand
gestures (video described in fig. 2). Our partic-
ular instance of the model had two levels, the
first one featuring 35 modules of 100 variables

(nearly 200% global redundancy over the origi-
nal input) and the second one constituted by a
single module taking a 350 variables input (10
variables per child module).

The video input consists of 5 gestures (3-5
sec. each) coming in the sequence A - B - C -
B - A (fig. 2). Each single gesture is made of
several micro-gestures (eg. single hand wave)
of about 1 sec. each, repeated 3 to 4 times.
The input thus displays two time scales: the
scale of micro-gestures and the scale of ges-
tures. The second instances of gestures A and
B differ slightly from the first instances in hand
position, gesture duration, etc.

Experimentally, our algorithm is able to dis-
tinguish between the tree different unique ges-
tures, and recognize both instances of A and
both instances of B being the same gesture.

At level 1, the modules identify 21 micro-
situations, the timing of which indicates they
correspond to the micro-gestures in the video.
The average over all first-level modules of the
pairwise proximity between the eigenvectors
representing these situations is shown in figure
2, already making apparent the global struc-
ture of the video.

At level 2, the single top module identifies
5 situations, corresponding to the 5 different
hand gestures. Pairwise proximity between
the eigenvectors of these situations is shown in
figure 2, showing strong perceived proximity
between the two instances of gesture A and
between the two instances of gesture B.

It is to note that these results are obtained
online, but not in real time: each situation gets
"perceived" after it has already ended (with
a delay of half the characteristic time of situ-
ations at the level considered). However we
believe the algorithm can be ported to quasi
real-time, which will be part of future improve-
ments.

4 Future work

4.1 Real time processing

Our algorithm would be a good candidate in-
ference system to build an embodied develop-
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Figure 2: Learning the structure of a video with two time scales

6



mental robot –were it able to work in real time.
We believe we will soon be able to port it to
quasi-real time, with perceptive delay being
only a fraction of the characteristic length of a
situation. Indeed, we have verified experimen-
tally that situation eigenvectors computed for
only the first few frames of a situation are fairly
close to those of the entire situation (which
makes perfect sense given that situations are
defined as segments of time displaying high
coherence).

We can therefore improve the algorithm
by having two separate processes, a delayed
learning process and a quasi-real-time infer-
ence process. The former will be based on
eigenvectors computed retrospectively, once
a situation has been recognized as over. The
later will be based on eigenvectors computed
as soon as the start of a situation has been de-
tected (or possibly even earlier if we base them
on an arbitrary sequencing), which would be
compared to eigenvectors recorded during the
learning phase, in order to adjust in real time
the probably distribution over what situations
the system might be currently seeing.

4.2 Prediction

Because the notion of correlation that we em-
ploy in our model contains some temporal ex-
tension, If the system is able to recognize a sit-
uation after perceiving only its first few frames,
it can also "predict" what follows in the sit-
uation, by comparing the correlations it has
detected so far to the correlations mapped in
the previously learned situation. Basically, hav-
ing a certain number of variables in a cluster
being "activated" would be enough to identify
the entire cluster as being currently perceived,
leading to all variables in the cluster to be ac-
tivated. This can be achieved with simple top-
down, level-to-level feedback.

4.3 Benchmarking

While the present paper is meant merely as a
presentation of our approach, our algorithm
still requires to be benchmarked against other

spatiotemporal inference systems (SFA, HTM,
HMM-based algorithms, etc.), in particular in
regard to the tasks with applications in cog-
nitive robotics, such as inference over a video
stream or other real-world sensor data stream.

Conclusion

In this paper we presented a new approach to
spatiotemporal inference, built with the tools
of information theory. Our algorithm based on
this approach is able to extract the spatiotem-
poral concept hierarchy of a large continuous
data stream such as a video, as illustrated in
our experimental results. It is our hope that fu-
ture work on this model will yield interesting
cognitive developmental robotics applications,
allowing real-world agents to make sense of
large sensorimotor data streams: performing
one shot learning of increasingly complex con-
cepts, hierarchical inference, prediction, and
motor control.
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